\(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [388]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 34, antiderivative size = 78 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} (B-C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \]

[Out]

(B-C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2*C*tan(d*x+c)/d/(a+a*se
c(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {4139, 12, 3880, 209} \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} (B-C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(Sqrt[2]*(B - C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) + (2*C*Tan[c +
 d*x])/(d*Sqrt[a + a*Sec[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4139

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(b*(m + 1)
), Int[(a + b*Csc[e + f*x])^m*Simp[A*b*(m + 1) + (a*C*m + b*B*(m + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b
, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 \int \frac {a (B-C) \sec (c+d x)}{2 \sqrt {a+a \sec (c+d x)}} \, dx}{a} \\ & = \frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+(B-C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = \frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}-\frac {(2 (B-C)) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {\sqrt {2} (B-C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.13 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (\sqrt {2} (B-C) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right )+2 C \sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((Sqrt[2]*(B - C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] + 2*C*Sqrt[1 - Sec[c + d*x]])*Tan[c + d*x])/(d*Sqrt[
1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(193\) vs. \(2(67)=134\).

Time = 0.72 (sec) , antiderivative size = 194, normalized size of antiderivative = 2.49

method result size
default \(\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (B \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}-C \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+2 C \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{d a}\) \(194\)
parts \(\frac {B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{d a}-\frac {C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )\right )}{d a}\) \(207\)

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(B*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^
2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)-C*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-
1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)+2*C*(-cot(d*x+c)+csc(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 287, normalized size of antiderivative = 3.68 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {\sqrt {2} {\left ({\left (B - C\right )} a \cos \left (d x + c\right ) + {\left (B - C\right )} a\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, C \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {2 \, C \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - \frac {\sqrt {2} {\left ({\left (B - C\right )} a \cos \left (d x + c\right ) + {\left (B - C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right ) + a d}\right ] \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(2)*((B - C)*a*cos(d*x + c) + (B - C)*a)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*
x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(
d*x + c) + 1)) - 4*C*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), (2*C*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) - sqrt(2)*((B - C)*a*cos(d*x + c) + (B - C)*a)*arctan(sqrt(2)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) + a*d
)]

Sympy [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)/sqrt(a*(sec(c + d*x) + 1)), x)

Maxima [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/sqrt(a*sec(d*x + c) + a), x)

Giac [A] (verification not implemented)

none

Time = 1.19 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.68 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\frac {2 \, \sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {{\left (\sqrt {2} B - \sqrt {2} C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{d} \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-(2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*C*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sgn(cos
(d*x + c))) + (sqrt(2)*B - sqrt(2)*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2
+ a)))/(sqrt(-a)*sgn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(1/2), x)